

Ground Vehicle Simulation of Military Vehicles Using High Performance Computing

DoD High Performance Computing Modernization Program Users Group Conference 2001

BY

MICHAEL D. LETHERWOOD

U. S. ARMY TANK-AUTOMOTIVE RESEARCH, DEVELOPMENT & ENGINEERING CENTER (TARDEC)
NATIONAL AUTOMOTIVE CENTER (NAC)

OUTLINE

- SIMULATION OF MILITARY VEHICLES OVERVIEW
- TACOM-TARDEC HPC CONFIGURATION
- MODELING METHODOLOGY
- SIMULATION-BASED ACQUISITION
- OTHER CASE STUDIES
- CONCLUSION

SIMULATION OF MILITARY VEHICLES

WHAT IS IT?

- ANALYTICAL TESTING OF VEHICLES/SUBSYSTEMS UNDER REPEATABLE, CONTROLLED CONDITIONS
- A TOOL FOR SCREENING NEW/MODIFIED TECHNOLOGIES AND/OR COMPONENTS PRIOR TO PROTOTYPING
- PRECISE AND EFFICIENT MECHANISM FOR THE EVALUATION OF NEW SYSTEMS OR TROUBLE SHOOTING FIELDED VEHICLE PROBLEMS

WHY ARE WE DOING IT?

- COST EFFECTIVE AUGMENTATION TO FIELD TESTING
- TO ANSWER QUESTIONS THAT CANNOT BE ANSWERED BY FIELD TESTING ALONE
- TO ACCELERATE THE COMPONENT INTEGRATION PROCESS

HOW WE'RE DOING IT - ANALYTICAL EXPLORATION OF DESIGNS

SIMULATION OF MILITARY VEHICLES

MAJOR AREAS OF DYNAMIC SIMULATION

- ON AND OFF ROAD MANEUVERABILITY AND STABILITY
- EMERGENCY LANE CHANGE, OBSTACLE AVOIDANCE, OBSTACLE NEGOTIATION
- VEHICLE MOBILITY AND RIDE QUALITY
- SYNERGISTIC SUBSYSTEM PERFORMANCE
- ERGONOMICS
- RELIABILITY STUDIES
- SUPPORT OF LABORATORY TESTING

SIMULATION OF MILITARY VEHICLES

TYPES OF VEHICLES MODELED AND SIMULATED

- WHEELED
 - TRUCKS AND TRUCK/TRAILER COMBINATIONS
 - FIFTH WHEEL/STEERED MULTI-AXLE/ ARTICULATED
 - HIGH MOBILITY VEHICLES
 - TOWED ARTILLERY
- TRACKED LIGHT & HEAVY ARMORED COMBAT VEHICLES

TYPES OF TERRAINS/ENVIRONMENTS SIMULATED

- IRREGULAR SURFACE PROFILES BUMPS, POTHOLES, RUTS, MOUNDS, SLOPES, HILLS, CHANGING SURFACE CONDITIONS
- IRREGULAR TRAJECTORIES VARYING CURVATURES, STEERING AND BRAKING MANEUVERS

TACOM-TARDEC HPC CONFIGURATION

- HARDWARE INCLUDES (SUPPORTS PARALLEL COMPUTING):
 - SILICON GRAPHICS, INC. (SGI) POWER CHALLENGE ARRAY: 56 MIPS R10000 PROCESSORS, 12 GB MEMORY, 500 GB ON-LINE STORAGE
 - SGI ONYX2 REALITYMONSTER: 32 MIPS R12000 PROCESSORS, 31 GB MEMORY, 430 GB ON-LINE STORAGE, 4 INFINITE REALITY 2 GRAPHICS ENGINES
 - SGI ORIGIN2000: 4 MIPS R12000 PROCESSORS, 1 GB MEMORY, 72 GB ON-LINE STORAGE
 - RELATED HARDWARE INCLUDES DISTRIBUTED HIGH-END WORKSTATIONS AND DESKTOP & BROADCAST GRAPHICS & VISUALIZATION PRODUCTION SYSTEMS

TACOM-TARDEC HPC CONFIGURATION

MODELING METHODOLOGY: DYNAMIC ANALYSIS AND DESIGN SYSTEM (DADS)

- GENERAL PURPOSE USER DEFINES/DEBUGS MODELS, AUTOMATED
- PREPROCESSOR USES BUILDING BLOCK APPROACH (LIBRARY)
- DETERMINES SPATIAL, TRANSIENT-DYNAMIC RESPONSE OF MULTIBODY MECHANICAL SYSTEMS
- PROVIDES RESULTS AND TIME HISTORIES OF STATE VARIABLES
- POST PROCESSOR PLOTS STATES
- PROVIDES COMPUTER-GENERATED IMAGES FOR VISUALIZATION

MODELING METHODOLOGY

CHARACTERIZATION, MODEL DEVELOPMENT AND VALIDATION

- BOTTOM LINE—MODEL PREDICTIONS ARE NO BETTER THAN DETAIL GOING INTO THEM
- ACCURATE 3-DIMENSIONAL DETAIL OBTAINED FROM:
 - CAD DRAWINGS WHEN AVAILABLE
 - HAND MEASUREMENTS WHEN NECESSARY
- INERTIA PROPERTIES MEASURED OR CALCULATED
- MODELS DEBUGGED USING POST ANALYSIS AND VISUALIZATION
- MODELS VALIDATED AGAINST CONTROLLED FIELD TESTS

"SIMULATION-BASED ACQUISITION"

- US ARMY ISSUES A "REQUEST FOR PROPOSAL"
- MODELING & SIMULATION USED TO DOWNSELECT OFFERORS
- HEAVIEST WEIGHT CRITERIA IN SELECTION PROCESS
- MINIMUM REQUIREMENTS:
 - SIDE/ LONGITUDINAL SLOPES
 - TURNING RADIUS
 - VERTICAL STEP, RIDE QUALITY
- PERFORMANCE ANALYSIS ON

SECONDARY AND CROSS COUNTRY TERRAINS

"SIMULATION-BASED ACQUISITION" VEHICLE DESCRIPTIONS

- PRIME MOVER 900 SERIES, 20-TON TRACTOR
- CTI, 11.00 X 22.5, 14-PLY TIRES, 3 SOLID-AXLES, WALKING-BEAM, LEAF SPRING SUSPENSIONS
- TANK-SEMITRAILER 5000 GALLON CAPACITY
- 11.00 X 20.00, 12-PLY TIRES
- SOLID AXLE
- LEAF SPRING SUSPENSION
- FIFTH-WHEEL BASED

"SIMULATION-BASED ACQUISITION" MODELING & SIMULATION OBJECTIVES

- COLLECT REPRESENTATIVE FIELD-TEST DATA
- SET-UP AND VALIDATE TRACTOR/TANK-SEMI-TRAILER MODELS
- PERFORM SIMULATIONS TO VERIFY COMPLIANCE WITH USER-SPECIFIED PERFORMANCE REQUIREMENTS
- COMPARE PERFORMANCE OF BIDDER'S CONCEPTS WITH 'OLD' SYSTEMS TO LOOK FOR PERFORMANCE GAINS
- RANK PERFORMANCE VS REQUIRED/DESIRED PERFORMANCE REQTS

"SIMULATION-BASED ACQUISITION"

EXAMPLE OF POSSIBLE DETAIL IN HEAVY VEHICLE MODEL

- MODEL OF A HEAVY EQUIPMENT TRANSPORT SYSTEM CARRYING 5000 GALLONS OF LIQUID
- TRACTOR—23 DOF, 20 BODIES, 15 JOINTS
- TRAILER—19 DOF, 9 BODIES, 8 JOINTS
- LOAD—SHIFTING MASS AND CG

"SIMULATION-BASED ACQUISITION" MODEL DESCRIPTIONS

- TRACTOR AND TANK-SEMITRAILER 20 AND 9 RIGID BODIES
- INCORPORATES PHYSICALLY MEASURED VEHICLE PARAMETERS
- SPECIAL FUNCTIONS TO INCORPORATE NON-LINEAR FEATURES
- ACCURATE REPRESENTATION OF SUSPENSION, STEERING, AND TIRE

"SIMULATION-BASED ACQUISITION" MODEL VALIDATION FIELD TESTS

- LANE CHANGE, OBSTACLE AVOIDANCE, BUMPS, POTHOLES, J-TURNS, SIDE-SLOPES, AND CROSS COUNTRY TERRAINS (38 EXPERIMENTS)
- 22 CHANNELS OF DATA COLLECTED TO MEASURE STATE VARIABLES,
- TRUCK SPEED AND STEERING USED AS DRIVING INPUTS TO MODELS

"SIMULATION-BASED ACQUISITION" MODEL VALIDATION RESULTS

- EXTREME DISPLACEMENTS SIMILAR
- PEAK ROLL AND PITCH ANGLES OVER THE WIDE RANGE OF OPERATING SCENARIOS
- PEAK TIRE LIFT-OFF DURING LANE CHANGE MANEUVERS
- MAGNITUDE AND SHAPE OF THE VEHICLE DYNAMIC RESPONSE WERE ACCURATELY REPRODUCED
- SIMULATION MODEL IS 'ADEQUATE' FOR PREDICTING SYSTEM RESPONSE AND STABILITY
- MODEL READY FOR SSEB PRODUCTION RUNS

"SIMULATION-BASED ACQUISITION" EVALUATION CRITERIA

(STAGE 1)

- SIDE SLOPE TRAVERSE A 30 % SIDE SLOPE W/O OVERTURNING
- LONG. SLOPE ASCEND/DESCEND A 40 % LONG. SLOPE
- SPEED/OSCILLATION CONFORM TO FMSCR 393.70 WHICH LIMITS TRAILER OSCILLATION
- TURNING TURNING RADIUS SHALL NOT EXCEED 40 FT IN BOTH DIRECTIONS RIGHT AND LEFT
- VERTICAL STEP ASCEND/DESCEND A 12 INCH VERTICAL STEP W/O INTERFERENCE
- RIDE QUALITY TRAVERSE 8" HALF ROUND, @10 MPH W/ 3.0 G ACCEL.
- LANE CHANGE TRAVERSE AN 11 X 90 FOOT LANE CHANGE @ 40 MPH
- PERFORMANCE RELIABILITY, OPERATIONAL PROFILE, FAILURE, AND CORRECTIVE ACTION

(STAGE 2)

• CROSS COUNTRY - TRAVERSE BELGIAN BLOCK, MUNSON GRAVEL, PERRYMAN 1, AND CHURCHVILLE B CROSS-COUNTRY COURSES

"SIMULATION-BASED ACQUISITION" SIMULATION RANKING CRITERIA

PASS/FAIL:	PASS	FAIL
I ASS/I AIL.	<u> 1 ASS</u>	<u>rail</u>

• SPEED/OSCILLATION < + 3 INCHES > + 3 INCHES

• TURNING RADIUS < 40 FOOT RADIUS > 40 FOOT RADIUS

• VERTICAL STEP > 12 INCHES < 12 INCHES

AI	DJECTIVAL:	DEFICIENT	ADEQUATE	GOOD	EXCELLENT
•	SIDE SLOPE	<30%	30 TO 34%	35 TO 39 %	>40 %
•	LONG. SLOPE	<40%	40 TO 45 %	46 TO 50%	>50 %
•	1/2-ROUND (3G)	<10	10 TO 14	15 TO 19	>20 (MPH)
•	LANE CHANGE	C <40	40 TO 44	45 TO 49	>50 (MPH)
•	*OFF-ROAD	WORSE	SAME	EXCEEDS	FAR EXCEEDS

Perryman 1(0.42" rms) Belgian Block (0.69" rms)

Churchville B Mild (1.77" rms) Churchville B Rough (2.68" rms)

^{*} Ratings based on performance comparisons with M105A2

IRV Towing M1 Tank Analysis

- Customer Program Executive Officer ASM
- Used M&S to develop and test new towbars and effective external braking mechanism
- PEO-ASM used analysis to augment field-tests and facilitate vehicle modifications to allow safe towing

Truck/Trailer Concept Variant Analysis

- Customer PM Heavy Tactical Vehicles
- Use M&S to evaluate transport of bulk fuel and water containers, dump body, concrete mixer, water & bituminous spreaders, 3-Con (900 & 1800 Gallon self-contained refuel/re-supply pallets), and fuel and service distribution and modules
- Proved-out feasibility of using PLS as a transporter

5-Ton/ Howitzer Stability Analysis

- Customer PEO Combat Support
- 8+ ton howitzer has de-stabilizing effect on 5-ton
- Used M&S to conduct on-road braking and steering tests
- Provided operating guidelines and payload placement criteria to make combination safer for use

M2A3 Bradley Life-cycle Support

- Customer PEO ASM
- Virtual prototype M2A3
 to evaluate special
 features, PIPS,
 configuration management
 changes
- Use in-house developed code to run in real-time
- Implement on DIS
- Provide data to physical simulators

Medium Tactical Truck Remanufacture Program

- Met aggressive schedule
 - 3 Months from RFP to contract award
- M&S utilized to evaluate vehicle performance
- Contractors leveraging our models to develop prototypes
- M&S will reduce field testing timelines and costs

CONCLUSIONS

"SIGNIFICANCE OF USING SIMULATION"

- QUANTIFY LIMITS OF STABILITY, HANDLING, AND PERFORMANCE
- DETERMINE COMPLIANCE WITH ALL MANDATED PERF. REQTS.
- COST EFFECTIVE, LOW RISK, SHORT TIME FRAME FOR RESULTS
- AVOIDS BUILD-TEST-BREAK-FIX APPROACH
- PIPS AND DESIGN UPGRADES CAN BE TESTED IN SOFTWARE
- PROVIDE FIELD TEST INSIGHT AND GUIDELINES
- USE SIMULATION TO AUGMENT DECISION MAKING PROCESSES
- SIMULATION IS NOT A 'REPLACE ALL' FOR FIELD TESTING